This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash3tr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 2 | hashvnfin | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 3 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = 3 → 𝑉 ∈ Fin ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 → 𝑉 ∈ Fin ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → 𝑉 ∈ Fin ) |
| 5 | hash3 | ⊢ ( ♯ ‘ 3o ) = 3 | |
| 6 | 5 | eqcomi | ⊢ 3 = ( ♯ ‘ 3o ) |
| 7 | 6 | a1i | ⊢ ( 𝑉 ∈ Fin → 3 = ( ♯ ‘ 3o ) ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) ) ) |
| 9 | 3onn | ⊢ 3o ∈ ω | |
| 10 | nnfi | ⊢ ( 3o ∈ ω → 3o ∈ Fin ) | |
| 11 | 9 10 | ax-mp | ⊢ 3o ∈ Fin |
| 12 | hashen | ⊢ ( ( 𝑉 ∈ Fin ∧ 3o ∈ Fin ) → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) ↔ 𝑉 ≈ 3o ) ) | |
| 13 | 11 12 | mpan2 | ⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) ↔ 𝑉 ≈ 3o ) ) |
| 14 | 13 | biimpd | ⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) → 𝑉 ≈ 3o ) ) |
| 15 | 8 14 | sylbid | ⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 3 → 𝑉 ≈ 3o ) ) |
| 16 | 15 | adantld | ⊢ ( 𝑉 ∈ Fin → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → 𝑉 ≈ 3o ) ) |
| 17 | 4 16 | mpcom | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → 𝑉 ≈ 3o ) |
| 18 | en3 | ⊢ ( 𝑉 ≈ 3o → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) |