This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size two is an unordered pair if and only if it contains two different elements. (Contributed by Alexander van der Vekens, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2exprb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2prde | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) | |
| 2 | 1 | ex | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 2 → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 3 | hashprg | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) | |
| 4 | 3 | el2v | ⊢ ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
| 5 | 4 | a1i | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 6 | 5 | biimpd | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ≠ 𝑏 → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 7 | fveqeq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) | |
| 8 | 6 7 | sylibrd | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ≠ 𝑏 → ( ♯ ‘ 𝑉 ) = 2 ) ) |
| 9 | 8 | impcom | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ♯ ‘ 𝑉 ) = 2 ) |
| 10 | 9 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ♯ ‘ 𝑉 ) = 2 ) ) |
| 11 | 10 | exlimdvv | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ♯ ‘ 𝑉 ) = 2 ) ) |
| 12 | 2 11 | impbid | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |