This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2prde | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2pr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 𝑉 = { 𝑎 , 𝑏 } ) | |
| 2 | equid | ⊢ 𝑏 = 𝑏 | |
| 3 | vex | ⊢ 𝑎 ∈ V | |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | 3 4 | preqsn | ⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } ↔ ( 𝑎 = 𝑏 ∧ 𝑏 = 𝑏 ) ) |
| 6 | eqeq2 | ⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } → ( 𝑉 = { 𝑎 , 𝑏 } ↔ 𝑉 = { 𝑏 } ) ) | |
| 7 | fveq2 | ⊢ ( 𝑉 = { 𝑏 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑏 } ) ) | |
| 8 | hashsng | ⊢ ( 𝑏 ∈ V → ( ♯ ‘ { 𝑏 } ) = 1 ) | |
| 9 | 8 | elv | ⊢ ( ♯ ‘ { 𝑏 } ) = 1 |
| 10 | 7 9 | eqtrdi | ⊢ ( 𝑉 = { 𝑏 } → ( ♯ ‘ 𝑉 ) = 1 ) |
| 11 | eqeq1 | ⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( ( ♯ ‘ 𝑉 ) = 1 ↔ 2 = 1 ) ) | |
| 12 | 1ne2 | ⊢ 1 ≠ 2 | |
| 13 | df-ne | ⊢ ( 1 ≠ 2 ↔ ¬ 1 = 2 ) | |
| 14 | pm2.21 | ⊢ ( ¬ 1 = 2 → ( 1 = 2 → 𝑎 ≠ 𝑏 ) ) | |
| 15 | 13 14 | sylbi | ⊢ ( 1 ≠ 2 → ( 1 = 2 → 𝑎 ≠ 𝑏 ) ) |
| 16 | 12 15 | ax-mp | ⊢ ( 1 = 2 → 𝑎 ≠ 𝑏 ) |
| 17 | 16 | eqcoms | ⊢ ( 2 = 1 → 𝑎 ≠ 𝑏 ) |
| 18 | 11 17 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( ( ♯ ‘ 𝑉 ) = 1 → 𝑎 ≠ 𝑏 ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( ( ♯ ‘ 𝑉 ) = 1 → 𝑎 ≠ 𝑏 ) ) |
| 20 | 10 19 | syl5com | ⊢ ( 𝑉 = { 𝑏 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → 𝑎 ≠ 𝑏 ) ) |
| 21 | 6 20 | biimtrdi | ⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } → ( 𝑉 = { 𝑎 , 𝑏 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → 𝑎 ≠ 𝑏 ) ) ) |
| 22 | 21 | impcomd | ⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
| 23 | 5 22 | sylbir | ⊢ ( ( 𝑎 = 𝑏 ∧ 𝑏 = 𝑏 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
| 24 | 2 23 | mpan2 | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
| 25 | ax-1 | ⊢ ( 𝑎 ≠ 𝑏 → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) | |
| 26 | 24 25 | pm2.61ine | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) |
| 27 | simpr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑉 = { 𝑎 , 𝑏 } ) | |
| 28 | 26 27 | jca | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 30 | 29 | 2eximdv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( ∃ 𝑎 ∃ 𝑏 𝑉 = { 𝑎 , 𝑏 } → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 31 | 1 30 | mpd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |