This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size two is an unordered pair if and only if it contains two different elements. (Contributed by Alexander van der Vekens, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2exprb | |- ( V e. W -> ( ( # ` V ) = 2 <-> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2prde | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) |
|
| 2 | 1 | ex | |- ( V e. W -> ( ( # ` V ) = 2 -> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) |
| 3 | hashprg | |- ( ( a e. _V /\ b e. _V ) -> ( a =/= b <-> ( # ` { a , b } ) = 2 ) ) |
|
| 4 | 3 | el2v | |- ( a =/= b <-> ( # ` { a , b } ) = 2 ) |
| 5 | 4 | a1i | |- ( V = { a , b } -> ( a =/= b <-> ( # ` { a , b } ) = 2 ) ) |
| 6 | 5 | biimpd | |- ( V = { a , b } -> ( a =/= b -> ( # ` { a , b } ) = 2 ) ) |
| 7 | fveqeq2 | |- ( V = { a , b } -> ( ( # ` V ) = 2 <-> ( # ` { a , b } ) = 2 ) ) |
|
| 8 | 6 7 | sylibrd | |- ( V = { a , b } -> ( a =/= b -> ( # ` V ) = 2 ) ) |
| 9 | 8 | impcom | |- ( ( a =/= b /\ V = { a , b } ) -> ( # ` V ) = 2 ) |
| 10 | 9 | a1i | |- ( V e. W -> ( ( a =/= b /\ V = { a , b } ) -> ( # ` V ) = 2 ) ) |
| 11 | 10 | exlimdvv | |- ( V e. W -> ( E. a E. b ( a =/= b /\ V = { a , b } ) -> ( # ` V ) = 2 ) ) |
| 12 | 2 11 | impbid | |- ( V e. W -> ( ( # ` V ) = 2 <-> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) |