This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnf.c | ⊢ Ⅎ 𝑘 𝐶 | |
| gsumsnf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| gsumsnf.s | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) | ||
| Assertion | gsumsnf | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnf.c | ⊢ Ⅎ 𝑘 𝐶 | |
| 2 | gsumsnf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | gsumsnf.s | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) | |
| 4 | simp1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) | |
| 5 | simp2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝑀 ∈ 𝑉 ) | |
| 6 | simp3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) | |
| 7 | 3 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) |
| 8 | nfv | ⊢ Ⅎ 𝑘 𝐺 ∈ Mnd | |
| 9 | nfv | ⊢ Ⅎ 𝑘 𝑀 ∈ 𝑉 | |
| 10 | 1 | nfel1 | ⊢ Ⅎ 𝑘 𝐶 ∈ 𝐵 |
| 11 | 8 9 10 | nf3an | ⊢ Ⅎ 𝑘 ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) |
| 12 | 2 4 5 6 7 11 1 | gsumsnfd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |