This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnf.c | |- F/_ k C |
|
| gsumsnf.b | |- B = ( Base ` G ) |
||
| gsumsnf.s | |- ( k = M -> A = C ) |
||
| Assertion | gsumsnf | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnf.c | |- F/_ k C |
|
| 2 | gsumsnf.b | |- B = ( Base ` G ) |
|
| 3 | gsumsnf.s | |- ( k = M -> A = C ) |
|
| 4 | simp1 | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> G e. Mnd ) |
|
| 5 | simp2 | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> M e. V ) |
|
| 6 | simp3 | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> C e. B ) |
|
| 7 | 3 | adantl | |- ( ( ( G e. Mnd /\ M e. V /\ C e. B ) /\ k = M ) -> A = C ) |
| 8 | nfv | |- F/ k G e. Mnd |
|
| 9 | nfv | |- F/ k M e. V |
|
| 10 | 1 | nfel1 | |- F/ k C e. B |
| 11 | 8 9 10 | nf3an | |- F/ k ( G e. Mnd /\ M e. V /\ C e. B ) |
| 12 | 2 4 5 6 7 11 1 | gsumsnfd | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C ) |