This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018) (Proof shortened by AV, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpr.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumpr.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumpr.s | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) | ||
| gsumpr.t | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐷 ) | ||
| Assertion | gsumpr | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( 𝐶 + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpr.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumpr.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumpr.s | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) | |
| 4 | gsumpr.t | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐷 ) | |
| 5 | simp1 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐺 ∈ CMnd ) | |
| 6 | prfi | ⊢ { 𝑀 , 𝑁 } ∈ Fin | |
| 7 | 6 | a1i | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → { 𝑀 , 𝑁 } ∈ Fin ) |
| 8 | vex | ⊢ 𝑘 ∈ V | |
| 9 | 8 | elpr | ⊢ ( 𝑘 ∈ { 𝑀 , 𝑁 } ↔ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ) ) |
| 10 | eleq1a | ⊢ ( 𝐶 ∈ 𝐵 → ( 𝐴 = 𝐶 → 𝐴 ∈ 𝐵 ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 = 𝐶 → 𝐴 ∈ 𝐵 ) ) |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐴 = 𝐶 → 𝐴 ∈ 𝐵 ) ) |
| 13 | 3 12 | syl5com | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) ) |
| 14 | eleq1a | ⊢ ( 𝐷 ∈ 𝐵 → ( 𝐴 = 𝐷 → 𝐴 ∈ 𝐵 ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 = 𝐷 → 𝐴 ∈ 𝐵 ) ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐴 = 𝐷 → 𝐴 ∈ 𝐵 ) ) |
| 17 | 4 16 | syl5com | ⊢ ( 𝑘 = 𝑁 → ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) ) |
| 18 | 13 17 | jaoi | ⊢ ( ( 𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ) → ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) ) |
| 19 | 9 18 | sylbi | ⊢ ( 𝑘 ∈ { 𝑀 , 𝑁 } → ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) ) |
| 20 | 19 | impcom | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑀 , 𝑁 } ) → 𝐴 ∈ 𝐵 ) |
| 21 | disjsn2 | ⊢ ( 𝑀 ≠ 𝑁 → ( { 𝑀 } ∩ { 𝑁 } ) = ∅ ) | |
| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) → ( { 𝑀 } ∩ { 𝑁 } ) = ∅ ) |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( { 𝑀 } ∩ { 𝑁 } ) = ∅ ) |
| 24 | df-pr | ⊢ { 𝑀 , 𝑁 } = ( { 𝑀 } ∪ { 𝑁 } ) | |
| 25 | 24 | a1i | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → { 𝑀 , 𝑁 } = ( { 𝑀 } ∪ { 𝑁 } ) ) |
| 26 | eqid | ⊢ ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) = ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) | |
| 27 | 1 2 5 7 20 23 25 26 | gsummptfidmsplitres | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑀 } ) ) + ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑁 } ) ) ) ) |
| 28 | snsspr1 | ⊢ { 𝑀 } ⊆ { 𝑀 , 𝑁 } | |
| 29 | resmpt | ⊢ ( { 𝑀 } ⊆ { 𝑀 , 𝑁 } → ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) | |
| 30 | 28 29 | mp1i | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑀 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) ) |
| 32 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 33 | simp1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) → 𝑀 ∈ 𝑉 ) | |
| 34 | simpl | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) | |
| 35 | 1 3 | gsumsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |
| 36 | 32 33 34 35 | syl3an | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |
| 37 | 31 36 | eqtrd | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑀 } ) ) = 𝐶 ) |
| 38 | snsspr2 | ⊢ { 𝑁 } ⊆ { 𝑀 , 𝑁 } | |
| 39 | resmpt | ⊢ ( { 𝑁 } ⊆ { 𝑀 , 𝑁 } → ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑁 } ) = ( 𝑘 ∈ { 𝑁 } ↦ 𝐴 ) ) | |
| 40 | 38 39 | mp1i | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑁 } ) = ( 𝑘 ∈ { 𝑁 } ↦ 𝐴 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑁 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝐴 ) ) ) |
| 42 | simp2 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) → 𝑁 ∈ 𝑊 ) | |
| 43 | simpr | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → 𝐷 ∈ 𝐵 ) | |
| 44 | 1 4 | gsumsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ 𝑊 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝐴 ) ) = 𝐷 ) |
| 45 | 32 42 43 44 | syl3an | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝐴 ) ) = 𝐷 ) |
| 46 | 41 45 | eqtrd | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑁 } ) ) = 𝐷 ) |
| 47 | 37 46 | oveq12d | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑀 } ) ) + ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ↾ { 𝑁 } ) ) ) = ( 𝐶 + 𝐷 ) ) |
| 48 | 27 47 | eqtrd | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( 𝐶 + 𝐷 ) ) |