This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptnn0fzfv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptnn0fzfv.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummptnn0fzfv.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptnn0fzfv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | ||
| gsummptnn0fzfv.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| gsummptnn0fzfv.u | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) | ||
| Assertion | gsummptnn0fzfv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptnn0fzfv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptnn0fzfv.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummptnn0fzfv.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptnn0fzfv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | |
| 5 | gsummptnn0fzfv.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 6 | gsummptnn0fzfv.u | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) | |
| 7 | elmapi | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) → 𝐹 : ℕ0 ⟶ 𝐵 ) | |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) | |
| 9 | 8 | ex | ⊢ ( 𝐹 : ℕ0 ⟶ 𝐵 → ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 10 | 4 7 9 | 3syl | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 11 | 10 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 12 | breq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑆 < 𝑥 ↔ 𝑆 < 𝑘 ) ) | |
| 13 | fveqeq2 | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑘 ) = 0 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ( 𝑆 < 𝑘 → ( 𝐹 ‘ 𝑘 ) = 0 ) ) ) |
| 15 | 14 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → ( 𝐹 ‘ 𝑘 ) = 0 ) ) |
| 16 | 6 15 | sylib | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → ( 𝐹 ‘ 𝑘 ) = 0 ) ) |
| 17 | 1 2 3 11 5 16 | gsummptnn0fz | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |