This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptnn0fzfv.b | |- B = ( Base ` G ) |
|
| gsummptnn0fzfv.0 | |- .0. = ( 0g ` G ) |
||
| gsummptnn0fzfv.g | |- ( ph -> G e. CMnd ) |
||
| gsummptnn0fzfv.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
||
| gsummptnn0fzfv.s | |- ( ph -> S e. NN0 ) |
||
| gsummptnn0fzfv.u | |- ( ph -> A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) |
||
| Assertion | gsummptnn0fzfv | |- ( ph -> ( G gsum ( k e. NN0 |-> ( F ` k ) ) ) = ( G gsum ( k e. ( 0 ... S ) |-> ( F ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptnn0fzfv.b | |- B = ( Base ` G ) |
|
| 2 | gsummptnn0fzfv.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsummptnn0fzfv.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptnn0fzfv.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
|
| 5 | gsummptnn0fzfv.s | |- ( ph -> S e. NN0 ) |
|
| 6 | gsummptnn0fzfv.u | |- ( ph -> A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) |
|
| 7 | elmapi | |- ( F e. ( B ^m NN0 ) -> F : NN0 --> B ) |
|
| 8 | ffvelcdm | |- ( ( F : NN0 --> B /\ k e. NN0 ) -> ( F ` k ) e. B ) |
|
| 9 | 8 | ex | |- ( F : NN0 --> B -> ( k e. NN0 -> ( F ` k ) e. B ) ) |
| 10 | 4 7 9 | 3syl | |- ( ph -> ( k e. NN0 -> ( F ` k ) e. B ) ) |
| 11 | 10 | ralrimiv | |- ( ph -> A. k e. NN0 ( F ` k ) e. B ) |
| 12 | breq2 | |- ( x = k -> ( S < x <-> S < k ) ) |
|
| 13 | fveqeq2 | |- ( x = k -> ( ( F ` x ) = .0. <-> ( F ` k ) = .0. ) ) |
|
| 14 | 12 13 | imbi12d | |- ( x = k -> ( ( S < x -> ( F ` x ) = .0. ) <-> ( S < k -> ( F ` k ) = .0. ) ) ) |
| 15 | 14 | cbvralvw | |- ( A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) <-> A. k e. NN0 ( S < k -> ( F ` k ) = .0. ) ) |
| 16 | 6 15 | sylib | |- ( ph -> A. k e. NN0 ( S < k -> ( F ` k ) = .0. ) ) |
| 17 | 1 2 3 11 5 16 | gsummptnn0fz | |- ( ph -> ( G gsum ( k e. NN0 |-> ( F ` k ) ) ) = ( G gsum ( k e. ( 0 ... S ) |-> ( F ` k ) ) ) ) |