This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptnn0fzfv.b | ||
| gsummptnn0fzfv.0 | |||
| gsummptnn0fzfv.g | |||
| gsummptnn0fzfv.f | |||
| gsummptnn0fzfv.s | |||
| gsummptnn0fzfv.u | |||
| Assertion | gsummptnn0fzfv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptnn0fzfv.b | ||
| 2 | gsummptnn0fzfv.0 | ||
| 3 | gsummptnn0fzfv.g | ||
| 4 | gsummptnn0fzfv.f | ||
| 5 | gsummptnn0fzfv.s | ||
| 6 | gsummptnn0fzfv.u | ||
| 7 | elmapi | ||
| 8 | ffvelcdm | ||
| 9 | 8 | ex | |
| 10 | 4 7 9 | 3syl | |
| 11 | 10 | ralrimiv | |
| 12 | breq2 | ||
| 13 | fveqeq2 | ||
| 14 | 12 13 | imbi12d | |
| 15 | 14 | cbvralvw | |
| 16 | 6 15 | sylib | |
| 17 | 1 2 3 11 5 16 | gsummptnn0fz |