This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcom3fi.b | |- B = ( Base ` G ) |
|
| gsumcom3fi.g | |- ( ph -> G e. CMnd ) |
||
| gsumcom3fi.a | |- ( ph -> A e. Fin ) |
||
| gsumcom3fi.r | |- ( ph -> C e. Fin ) |
||
| gsumcom3fi.f | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
||
| Assertion | gsumcom3fi | |- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcom3fi.b | |- B = ( Base ` G ) |
|
| 2 | gsumcom3fi.g | |- ( ph -> G e. CMnd ) |
|
| 3 | gsumcom3fi.a | |- ( ph -> A e. Fin ) |
|
| 4 | gsumcom3fi.r | |- ( ph -> C e. Fin ) |
|
| 5 | gsumcom3fi.f | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | xpfi | |- ( ( A e. Fin /\ C e. Fin ) -> ( A X. C ) e. Fin ) |
|
| 8 | 3 4 7 | syl2anc | |- ( ph -> ( A X. C ) e. Fin ) |
| 9 | brxp | |- ( j ( A X. C ) k <-> ( j e. A /\ k e. C ) ) |
|
| 10 | 9 | biimpri | |- ( ( j e. A /\ k e. C ) -> j ( A X. C ) k ) |
| 11 | 10 | adantl | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> j ( A X. C ) k ) |
| 12 | 11 | pm2.24d | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. j ( A X. C ) k -> X = ( 0g ` G ) ) ) |
| 13 | 12 | impr | |- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j ( A X. C ) k ) ) -> X = ( 0g ` G ) ) |
| 14 | 1 6 2 3 4 5 8 13 | gsumcom3 | |- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |