This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If any representation of a graph with vertices V and edges E has a certain property ps , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) has this property. (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gropd.g | ⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ) | |
| gropd.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | ||
| gropd.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| grstructd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | ||
| grstructd.f | ⊢ ( 𝜑 → Fun ( 𝑆 ∖ { ∅ } ) ) | ||
| grstructd.d | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝑆 ) ) | ||
| grstructd.b | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑉 ) | ||
| grstructd.e | ⊢ ( 𝜑 → ( .ef ‘ 𝑆 ) = 𝐸 ) | ||
| Assertion | grstructd | ⊢ ( 𝜑 → [ 𝑆 / 𝑔 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropd.g | ⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ) | |
| 2 | gropd.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | |
| 3 | gropd.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 4 | grstructd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | |
| 5 | grstructd.f | ⊢ ( 𝜑 → Fun ( 𝑆 ∖ { ∅ } ) ) | |
| 6 | grstructd.d | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝑆 ) ) | |
| 7 | grstructd.b | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑉 ) | |
| 8 | grstructd.e | ⊢ ( 𝜑 → ( .ef ‘ 𝑆 ) = 𝐸 ) | |
| 9 | funvtxdmge2val | ⊢ ( ( Fun ( 𝑆 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝑆 ) ) → ( Vtx ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 11 | 10 7 | eqtrd | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 12 | funiedgdmge2val | ⊢ ( ( Fun ( 𝑆 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝑆 ) ) → ( iEdg ‘ 𝑆 ) = ( .ef ‘ 𝑆 ) ) | |
| 13 | 5 6 12 | syl2anc | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( .ef ‘ 𝑆 ) ) |
| 14 | 13 8 | eqtrd | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = 𝐸 ) |
| 15 | 11 14 | jca | ⊢ ( 𝜑 → ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) ) |
| 16 | nfcv | ⊢ Ⅎ 𝑔 𝑆 | |
| 17 | nfv | ⊢ Ⅎ 𝑔 ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) | |
| 18 | nfsbc1v | ⊢ Ⅎ 𝑔 [ 𝑆 / 𝑔 ] 𝜓 | |
| 19 | 17 18 | nfim | ⊢ Ⅎ 𝑔 ( ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) → [ 𝑆 / 𝑔 ] 𝜓 ) |
| 20 | fveqeq2 | ⊢ ( 𝑔 = 𝑆 → ( ( Vtx ‘ 𝑔 ) = 𝑉 ↔ ( Vtx ‘ 𝑆 ) = 𝑉 ) ) | |
| 21 | fveqeq2 | ⊢ ( 𝑔 = 𝑆 → ( ( iEdg ‘ 𝑔 ) = 𝐸 ↔ ( iEdg ‘ 𝑆 ) = 𝐸 ) ) | |
| 22 | 20 21 | anbi12d | ⊢ ( 𝑔 = 𝑆 → ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) ↔ ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) ) ) |
| 23 | sbceq1a | ⊢ ( 𝑔 = 𝑆 → ( 𝜓 ↔ [ 𝑆 / 𝑔 ] 𝜓 ) ) | |
| 24 | 22 23 | imbi12d | ⊢ ( 𝑔 = 𝑆 → ( ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ↔ ( ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) → [ 𝑆 / 𝑔 ] 𝜓 ) ) ) |
| 25 | 16 19 24 | spcgf | ⊢ ( 𝑆 ∈ 𝑋 → ( ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) → ( ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) → [ 𝑆 / 𝑔 ] 𝜓 ) ) ) |
| 26 | 4 1 15 25 | syl3c | ⊢ ( 𝜑 → [ 𝑆 / 𝑔 ] 𝜓 ) |