This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If any representation of a graph with vertices V and edges E has a certain property ps , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) has this property. (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gropd.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) ) |
|
| gropd.v | |- ( ph -> V e. U ) |
||
| gropd.e | |- ( ph -> E e. W ) |
||
| grstructd.s | |- ( ph -> S e. X ) |
||
| grstructd.f | |- ( ph -> Fun ( S \ { (/) } ) ) |
||
| grstructd.d | |- ( ph -> 2 <_ ( # ` dom S ) ) |
||
| grstructd.b | |- ( ph -> ( Base ` S ) = V ) |
||
| grstructd.e | |- ( ph -> ( .ef ` S ) = E ) |
||
| Assertion | grstructd | |- ( ph -> [. S / g ]. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropd.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) ) |
|
| 2 | gropd.v | |- ( ph -> V e. U ) |
|
| 3 | gropd.e | |- ( ph -> E e. W ) |
|
| 4 | grstructd.s | |- ( ph -> S e. X ) |
|
| 5 | grstructd.f | |- ( ph -> Fun ( S \ { (/) } ) ) |
|
| 6 | grstructd.d | |- ( ph -> 2 <_ ( # ` dom S ) ) |
|
| 7 | grstructd.b | |- ( ph -> ( Base ` S ) = V ) |
|
| 8 | grstructd.e | |- ( ph -> ( .ef ` S ) = E ) |
|
| 9 | funvtxdmge2val | |- ( ( Fun ( S \ { (/) } ) /\ 2 <_ ( # ` dom S ) ) -> ( Vtx ` S ) = ( Base ` S ) ) |
|
| 10 | 5 6 9 | syl2anc | |- ( ph -> ( Vtx ` S ) = ( Base ` S ) ) |
| 11 | 10 7 | eqtrd | |- ( ph -> ( Vtx ` S ) = V ) |
| 12 | funiedgdmge2val | |- ( ( Fun ( S \ { (/) } ) /\ 2 <_ ( # ` dom S ) ) -> ( iEdg ` S ) = ( .ef ` S ) ) |
|
| 13 | 5 6 12 | syl2anc | |- ( ph -> ( iEdg ` S ) = ( .ef ` S ) ) |
| 14 | 13 8 | eqtrd | |- ( ph -> ( iEdg ` S ) = E ) |
| 15 | 11 14 | jca | |- ( ph -> ( ( Vtx ` S ) = V /\ ( iEdg ` S ) = E ) ) |
| 16 | nfcv | |- F/_ g S |
|
| 17 | nfv | |- F/ g ( ( Vtx ` S ) = V /\ ( iEdg ` S ) = E ) |
|
| 18 | nfsbc1v | |- F/ g [. S / g ]. ps |
|
| 19 | 17 18 | nfim | |- F/ g ( ( ( Vtx ` S ) = V /\ ( iEdg ` S ) = E ) -> [. S / g ]. ps ) |
| 20 | fveqeq2 | |- ( g = S -> ( ( Vtx ` g ) = V <-> ( Vtx ` S ) = V ) ) |
|
| 21 | fveqeq2 | |- ( g = S -> ( ( iEdg ` g ) = E <-> ( iEdg ` S ) = E ) ) |
|
| 22 | 20 21 | anbi12d | |- ( g = S -> ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) <-> ( ( Vtx ` S ) = V /\ ( iEdg ` S ) = E ) ) ) |
| 23 | sbceq1a | |- ( g = S -> ( ps <-> [. S / g ]. ps ) ) |
|
| 24 | 22 23 | imbi12d | |- ( g = S -> ( ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) <-> ( ( ( Vtx ` S ) = V /\ ( iEdg ` S ) = E ) -> [. S / g ]. ps ) ) ) |
| 25 | 16 19 24 | spcgf | |- ( S e. X -> ( A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) -> ( ( ( Vtx ` S ) = V /\ ( iEdg ` S ) = E ) -> [. S / g ]. ps ) ) ) |
| 26 | 4 1 15 25 | syl3c | |- ( ph -> [. S / g ]. ps ) |