This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpinvfval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| grpinvfval.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpoinvfval | ⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinvfval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | grpinvfval.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 4 | rnexg | ⊢ ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V ) | |
| 5 | 1 4 | eqeltrid | ⊢ ( 𝐺 ∈ GrpOp → 𝑋 ∈ V ) |
| 6 | mptexg | ⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐺 ∈ GrpOp → ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) |
| 8 | rneq | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) | |
| 9 | 8 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
| 10 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) | |
| 12 | 11 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = 𝑈 ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
| 14 | 9 13 | riotaeqbidv | ⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
| 15 | 9 14 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
| 16 | df-ginv | ⊢ inv = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) ) | |
| 17 | 15 16 | fvmptg | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) → ( inv ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
| 18 | 7 17 | mpdan | ⊢ ( 𝐺 ∈ GrpOp → ( inv ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
| 19 | 3 18 | eqtrid | ⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |