This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpoidinv . (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | |- X = ran G |
|
| Assertion | grpoidinvlem1 | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( U G A ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | |- X = ran G |
|
| 2 | id | |- ( ( Y e. X /\ A e. X /\ A e. X ) -> ( Y e. X /\ A e. X /\ A e. X ) ) |
|
| 3 | 2 | 3anidm23 | |- ( ( Y e. X /\ A e. X ) -> ( Y e. X /\ A e. X /\ A e. X ) ) |
| 4 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( Y e. X /\ A e. X /\ A e. X ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) |
| 5 | 3 4 | sylan2 | |- ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) |
| 6 | 5 | adantr | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) |
| 7 | oveq1 | |- ( ( Y G A ) = U -> ( ( Y G A ) G A ) = ( U G A ) ) |
|
| 8 | 7 | ad2antrl | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( ( Y G A ) G A ) = ( U G A ) ) |
| 9 | oveq2 | |- ( ( A G A ) = A -> ( Y G ( A G A ) ) = ( Y G A ) ) |
|
| 10 | 9 | ad2antll | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G ( A G A ) ) = ( Y G A ) ) |
| 11 | simprl | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G A ) = U ) |
|
| 12 | 10 11 | eqtrd | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G ( A G A ) ) = U ) |
| 13 | 6 8 12 | 3eqtr3d | |- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( U G A ) = U ) |