This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpeqdivid.1 | ||
| grpeqdivid.2 | |||
| grpeqdivid.3 | |||
| Assertion | grpoeqdivid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpeqdivid.1 | ||
| 2 | grpeqdivid.2 | ||
| 3 | grpeqdivid.3 | ||
| 4 | 1 3 2 | grpodivid | |
| 5 | 4 | 3adant2 | |
| 6 | oveq1 | ||
| 7 | 6 | eqeq1d | |
| 8 | 5 7 | syl5ibrcom | |
| 9 | oveq1 | ||
| 10 | 1 3 | grponpcan | |
| 11 | 1 2 | grpolid | |
| 12 | 11 | 3adant2 | |
| 13 | 10 12 | eqeq12d | |
| 14 | 9 13 | imbitrid | |
| 15 | 8 14 | impbid |