This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvnzcl.b | |- B = ( Base ` G ) |
|
| grpinvnzcl.z | |- .0. = ( 0g ` G ) |
||
| grpinvnzcl.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvnz | |- ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvnzcl.b | |- B = ( Base ` G ) |
|
| 2 | grpinvnzcl.z | |- .0. = ( 0g ` G ) |
|
| 3 | grpinvnzcl.n | |- N = ( invg ` G ) |
|
| 4 | fveq2 | |- ( ( N ` X ) = .0. -> ( N ` ( N ` X ) ) = ( N ` .0. ) ) |
|
| 5 | 4 | adantl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` ( N ` X ) ) = ( N ` .0. ) ) |
| 6 | 1 3 | grpinvinv | |- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 7 | 6 | adantr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` ( N ` X ) ) = X ) |
| 8 | 2 3 | grpinvid | |- ( G e. Grp -> ( N ` .0. ) = .0. ) |
| 9 | 8 | ad2antrr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` .0. ) = .0. ) |
| 10 | 5 7 9 | 3eqtr3d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> X = .0. ) |
| 11 | 10 | ex | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) = .0. -> X = .0. ) ) |
| 12 | 11 | necon3d | |- ( ( G e. Grp /\ X e. B ) -> ( X =/= .0. -> ( N ` X ) =/= .0. ) ) |
| 13 | 12 | 3impia | |- ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. ) |