This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse function of a group. For a shorter proof using ax-rep , see grpinvfvalALT . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinvval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinvval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvfval | ⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinvval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpinvval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 9 | 8 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 + 𝑥 ) = 0 ) ) |
| 13 | 6 12 | riotaeqbidv | ⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| 14 | 6 13 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 15 | df-minusg | ⊢ invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) | |
| 16 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | p0ex | ⊢ { ∅ } ∈ V | |
| 18 | 17 16 | unex | ⊢ ( { ∅ } ∪ 𝐵 ) ∈ V |
| 19 | ssun2 | ⊢ 𝐵 ⊆ ( { ∅ } ∪ 𝐵 ) | |
| 20 | riotacl | ⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ 𝐵 ) | |
| 21 | 19 20 | sselid | ⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ ( { ∅ } ∪ 𝐵 ) ) |
| 22 | ssun1 | ⊢ { ∅ } ⊆ ( { ∅ } ∪ 𝐵 ) | |
| 23 | riotaund | ⊢ ( ¬ ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) = ∅ ) | |
| 24 | riotaex | ⊢ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ V | |
| 25 | 24 | elsn | ⊢ ( ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ { ∅ } ↔ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) = ∅ ) |
| 26 | 23 25 | sylibr | ⊢ ( ¬ ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ { ∅ } ) |
| 27 | 22 26 | sselid | ⊢ ( ¬ ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ ( { ∅ } ∪ 𝐵 ) ) |
| 28 | 21 27 | pm2.61i | ⊢ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ ( { ∅ } ∪ 𝐵 ) |
| 29 | 28 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐵 ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ∈ ( { ∅ } ∪ 𝐵 ) |
| 30 | 16 18 29 | mptexw | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ∈ V |
| 31 | 14 15 30 | fvmpt | ⊢ ( 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 32 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ∅ ) | |
| 33 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) = ∅ | |
| 34 | 32 33 | eqtr4di | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 35 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 36 | 1 35 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 37 | 36 | mpteq1d | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) = ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 38 | 34 37 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 39 | 31 38 | pm2.61i | ⊢ ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| 40 | 4 39 | eqtri | ⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |