This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse function of a group. For a shorter proof using ax-rep , see grpinvfvalALT . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvval.b | |- B = ( Base ` G ) |
|
| grpinvval.p | |- .+ = ( +g ` G ) |
||
| grpinvval.o | |- .0. = ( 0g ` G ) |
||
| grpinvval.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvfval | |- N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.b | |- B = ( Base ` G ) |
|
| 2 | grpinvval.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinvval.o | |- .0. = ( 0g ` G ) |
|
| 4 | grpinvval.n | |- N = ( invg ` G ) |
|
| 5 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 7 | fveq2 | |- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( g = G -> ( +g ` g ) = .+ ) |
| 9 | 8 | oveqd | |- ( g = G -> ( y ( +g ` g ) x ) = ( y .+ x ) ) |
| 10 | fveq2 | |- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 | 9 11 | eqeq12d | |- ( g = G -> ( ( y ( +g ` g ) x ) = ( 0g ` g ) <-> ( y .+ x ) = .0. ) ) |
| 13 | 6 12 | riotaeqbidv | |- ( g = G -> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) = ( iota_ y e. B ( y .+ x ) = .0. ) ) |
| 14 | 6 13 | mpteq12dv | |- ( g = G -> ( x e. ( Base ` g ) |-> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 15 | df-minusg | |- invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |
|
| 16 | 1 | fvexi | |- B e. _V |
| 17 | p0ex | |- { (/) } e. _V |
|
| 18 | 17 16 | unex | |- ( { (/) } u. B ) e. _V |
| 19 | ssun2 | |- B C_ ( { (/) } u. B ) |
|
| 20 | riotacl | |- ( E! y e. B ( y .+ x ) = .0. -> ( iota_ y e. B ( y .+ x ) = .0. ) e. B ) |
|
| 21 | 19 20 | sselid | |- ( E! y e. B ( y .+ x ) = .0. -> ( iota_ y e. B ( y .+ x ) = .0. ) e. ( { (/) } u. B ) ) |
| 22 | ssun1 | |- { (/) } C_ ( { (/) } u. B ) |
|
| 23 | riotaund | |- ( -. E! y e. B ( y .+ x ) = .0. -> ( iota_ y e. B ( y .+ x ) = .0. ) = (/) ) |
|
| 24 | riotaex | |- ( iota_ y e. B ( y .+ x ) = .0. ) e. _V |
|
| 25 | 24 | elsn | |- ( ( iota_ y e. B ( y .+ x ) = .0. ) e. { (/) } <-> ( iota_ y e. B ( y .+ x ) = .0. ) = (/) ) |
| 26 | 23 25 | sylibr | |- ( -. E! y e. B ( y .+ x ) = .0. -> ( iota_ y e. B ( y .+ x ) = .0. ) e. { (/) } ) |
| 27 | 22 26 | sselid | |- ( -. E! y e. B ( y .+ x ) = .0. -> ( iota_ y e. B ( y .+ x ) = .0. ) e. ( { (/) } u. B ) ) |
| 28 | 21 27 | pm2.61i | |- ( iota_ y e. B ( y .+ x ) = .0. ) e. ( { (/) } u. B ) |
| 29 | 28 | rgenw | |- A. x e. B ( iota_ y e. B ( y .+ x ) = .0. ) e. ( { (/) } u. B ) |
| 30 | 16 18 29 | mptexw | |- ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) e. _V |
| 31 | 14 15 30 | fvmpt | |- ( G e. _V -> ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 32 | fvprc | |- ( -. G e. _V -> ( invg ` G ) = (/) ) |
|
| 33 | mpt0 | |- ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) = (/) |
|
| 34 | 32 33 | eqtr4di | |- ( -. G e. _V -> ( invg ` G ) = ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 35 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 36 | 1 35 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 37 | 36 | mpteq1d | |- ( -. G e. _V -> ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) = ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 38 | 34 37 | eqtr4d | |- ( -. G e. _V -> ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 39 | 31 38 | pm2.61i | |- ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |
| 40 | 4 39 | eqtri | |- N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |