This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of grpinvfval using ax-rep . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinvval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinvval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvfvalALT | ⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinvval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpinvval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 9 | 8 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 + 𝑥 ) = 0 ) ) |
| 13 | 6 12 | riotaeqbidv | ⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| 14 | 6 13 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 15 | df-minusg | ⊢ invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) | |
| 16 | 14 15 1 | mptfvmpt | ⊢ ( 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 17 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ∅ ) | |
| 18 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) = ∅ | |
| 19 | 17 18 | eqtr4di | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 20 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 21 | 1 20 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 22 | 21 | mpteq1d | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) = ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 23 | 19 22 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) ) |
| 24 | 16 23 | pm2.61i | ⊢ ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| 25 | 4 24 | eqtri | ⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |