This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define inverse of group element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-minusg | ⊢ invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cminusg | ⊢ invg | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 7 | vw | ⊢ 𝑤 | |
| 8 | 7 | cv | ⊢ 𝑤 |
| 9 | cplusg | ⊢ +g | |
| 10 | 5 9 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 11 | 3 | cv | ⊢ 𝑥 |
| 12 | 8 11 10 | co | ⊢ ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) |
| 13 | c0g | ⊢ 0g | |
| 14 | 5 13 | cfv | ⊢ ( 0g ‘ 𝑔 ) |
| 15 | 12 14 | wceq | ⊢ ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) |
| 16 | 15 7 6 | crio | ⊢ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) |
| 17 | 3 6 16 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) |
| 18 | 1 2 17 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |
| 19 | 0 18 | wceq | ⊢ invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |