This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 8-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinvex.p | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpideu | ⊢ ( 𝐺 ∈ Grp → ∃! 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinvex.p | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 5 | 1 2 | mndideu | ⊢ ( 𝐺 ∈ Mnd → ∃! 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ Grp → ∃! 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) |