This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd . (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidd2.b | ||
| grpidd2.p | |||
| grpidd2.z | |||
| grpidd2.i | |||
| grpidd2.j | |||
| Assertion | grpidd2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd2.b | ||
| 2 | grpidd2.p | ||
| 3 | grpidd2.z | ||
| 4 | grpidd2.i | ||
| 5 | grpidd2.j | ||
| 6 | 2 | oveqd | |
| 7 | oveq2 | ||
| 8 | id | ||
| 9 | 7 8 | eqeq12d | |
| 10 | 4 | ralrimiva | |
| 11 | 9 10 3 | rspcdva | |
| 12 | 6 11 | eqtr3d | |
| 13 | 3 1 | eleqtrd | |
| 14 | eqid | ||
| 15 | eqid | ||
| 16 | eqid | ||
| 17 | 14 15 16 | grpid | |
| 18 | 5 13 17 | syl2anc | |
| 19 | 12 18 | mpbid | |
| 20 | 19 | eqcomd |