This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If any representation of a graph with vertices V and edges E has a certain property ps , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) has this property. (Contributed by AV, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gropd.g | ⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ) | |
| gropd.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | ||
| gropd.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| Assertion | gropd | ⊢ ( 𝜑 → [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropd.g | ⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ) | |
| 2 | gropd.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | |
| 3 | gropd.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 4 | opex | ⊢ 〈 𝑉 , 𝐸 〉 ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → 〈 𝑉 , 𝐸 〉 ∈ V ) |
| 6 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) | |
| 7 | opiedgfv | ⊢ ( ( 𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) | |
| 8 | 6 7 | jca | ⊢ ( ( 𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) → ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) ) |
| 9 | 2 3 8 | syl2anc | ⊢ ( 𝜑 → ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) ) |
| 10 | nfcv | ⊢ Ⅎ 𝑔 〈 𝑉 , 𝐸 〉 | |
| 11 | nfv | ⊢ Ⅎ 𝑔 ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) | |
| 12 | nfsbc1v | ⊢ Ⅎ 𝑔 [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 | |
| 13 | 11 12 | nfim | ⊢ Ⅎ 𝑔 ( ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) → [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 ) |
| 14 | fveqeq2 | ⊢ ( 𝑔 = 〈 𝑉 , 𝐸 〉 → ( ( Vtx ‘ 𝑔 ) = 𝑉 ↔ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) ) | |
| 15 | fveqeq2 | ⊢ ( 𝑔 = 〈 𝑉 , 𝐸 〉 → ( ( iEdg ‘ 𝑔 ) = 𝐸 ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑔 = 〈 𝑉 , 𝐸 〉 → ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) ↔ ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) ) ) |
| 17 | sbceq1a | ⊢ ( 𝑔 = 〈 𝑉 , 𝐸 〉 → ( 𝜓 ↔ [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑔 = 〈 𝑉 , 𝐸 〉 → ( ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ↔ ( ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) → [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 ) ) ) |
| 19 | 10 13 18 | spcgf | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ V → ( ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) → ( ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) → [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 ) ) ) |
| 20 | 5 1 9 19 | syl3c | ⊢ ( 𝜑 → [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝜓 ) |