This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If any representation of a graph with vertices V and edges E has a certain property ps , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) has this property. (Contributed by AV, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gropd.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) ) |
|
| gropd.v | |- ( ph -> V e. U ) |
||
| gropd.e | |- ( ph -> E e. W ) |
||
| Assertion | gropd | |- ( ph -> [. <. V , E >. / g ]. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropd.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) ) |
|
| 2 | gropd.v | |- ( ph -> V e. U ) |
|
| 3 | gropd.e | |- ( ph -> E e. W ) |
|
| 4 | opex | |- <. V , E >. e. _V |
|
| 5 | 4 | a1i | |- ( ph -> <. V , E >. e. _V ) |
| 6 | opvtxfv | |- ( ( V e. U /\ E e. W ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 7 | opiedgfv | |- ( ( V e. U /\ E e. W ) -> ( iEdg ` <. V , E >. ) = E ) |
|
| 8 | 6 7 | jca | |- ( ( V e. U /\ E e. W ) -> ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) ) |
| 9 | 2 3 8 | syl2anc | |- ( ph -> ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) ) |
| 10 | nfcv | |- F/_ g <. V , E >. |
|
| 11 | nfv | |- F/ g ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) |
|
| 12 | nfsbc1v | |- F/ g [. <. V , E >. / g ]. ps |
|
| 13 | 11 12 | nfim | |- F/ g ( ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) -> [. <. V , E >. / g ]. ps ) |
| 14 | fveqeq2 | |- ( g = <. V , E >. -> ( ( Vtx ` g ) = V <-> ( Vtx ` <. V , E >. ) = V ) ) |
|
| 15 | fveqeq2 | |- ( g = <. V , E >. -> ( ( iEdg ` g ) = E <-> ( iEdg ` <. V , E >. ) = E ) ) |
|
| 16 | 14 15 | anbi12d | |- ( g = <. V , E >. -> ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) <-> ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) ) ) |
| 17 | sbceq1a | |- ( g = <. V , E >. -> ( ps <-> [. <. V , E >. / g ]. ps ) ) |
|
| 18 | 16 17 | imbi12d | |- ( g = <. V , E >. -> ( ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) <-> ( ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) -> [. <. V , E >. / g ]. ps ) ) ) |
| 19 | 10 13 18 | spcgf | |- ( <. V , E >. e. _V -> ( A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> ps ) -> ( ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) -> [. <. V , E >. / g ]. ps ) ) ) |
| 20 | 5 1 9 19 | syl3c | |- ( ph -> [. <. V , E >. / g ]. ps ) |