This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimfn | ⊢ GraphIso Fn ( V × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim | ⊢ GraphIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) | |
| 2 | f1of | ⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) | |
| 3 | fvex | ⊢ ( Vtx ‘ ℎ ) ∈ V | |
| 4 | fvex | ⊢ ( Vtx ‘ 𝑔 ) ∈ V | |
| 5 | 3 4 | elmap | ⊢ ( 𝑓 ∈ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ↔ 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) |
| 6 | 2 5 | sylibr | ⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) → 𝑓 ∈ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) → 𝑓 ∈ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ) |
| 8 | ovex | ⊢ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ∈ V | |
| 9 | 7 8 | abex | ⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ∈ V |
| 10 | 1 9 | fnmpoi | ⊢ GraphIso Fn ( V × V ) |