This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd . (Contributed by AV, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abex.1 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
| abex.2 | ⊢ 𝐴 ∈ V | ||
| Assertion | abex | ⊢ { 𝑥 ∣ 𝜑 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abex.1 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
| 2 | abex.2 | ⊢ 𝐴 ∈ V | |
| 3 | 1 | abssi | ⊢ { 𝑥 ∣ 𝜑 } ⊆ 𝐴 |
| 4 | 2 3 | ssexi | ⊢ { 𝑥 ∣ 𝜑 } ∈ V |