This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimfn | |- GraphIso Fn ( _V X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim | |- GraphIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |
|
| 2 | f1of | |- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) -> f : ( Vtx ` g ) --> ( Vtx ` h ) ) |
|
| 3 | fvex | |- ( Vtx ` h ) e. _V |
|
| 4 | fvex | |- ( Vtx ` g ) e. _V |
|
| 5 | 3 4 | elmap | |- ( f e. ( ( Vtx ` h ) ^m ( Vtx ` g ) ) <-> f : ( Vtx ` g ) --> ( Vtx ` h ) ) |
| 6 | 2 5 | sylibr | |- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) -> f e. ( ( Vtx ` h ) ^m ( Vtx ` g ) ) ) |
| 7 | 6 | adantr | |- ( ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) -> f e. ( ( Vtx ` h ) ^m ( Vtx ` g ) ) ) |
| 8 | ovex | |- ( ( Vtx ` h ) ^m ( Vtx ` g ) ) e. _V |
|
| 9 | 7 8 | abex | |- { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } e. _V |
| 10 | 1 9 | fnmpoi | |- GraphIso Fn ( _V X. _V ) |