This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in Diestel p. 3. (Contributed by AV, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-grim | ⊢ GraphIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgrim | ⊢ GraphIso | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vh | ⊢ ℎ | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | 4 | cv | ⊢ 𝑓 |
| 6 | cvtx | ⊢ Vtx | |
| 7 | 1 | cv | ⊢ 𝑔 |
| 8 | 7 6 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 9 | 3 | cv | ⊢ ℎ |
| 10 | 9 6 | cfv | ⊢ ( Vtx ‘ ℎ ) |
| 11 | 8 10 5 | wf1o | ⊢ 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) |
| 12 | vj | ⊢ 𝑗 | |
| 13 | ciedg | ⊢ iEdg | |
| 14 | 7 13 | cfv | ⊢ ( iEdg ‘ 𝑔 ) |
| 15 | ve | ⊢ 𝑒 | |
| 16 | 9 13 | cfv | ⊢ ( iEdg ‘ ℎ ) |
| 17 | vd | ⊢ 𝑑 | |
| 18 | 12 | cv | ⊢ 𝑗 |
| 19 | 15 | cv | ⊢ 𝑒 |
| 20 | 19 | cdm | ⊢ dom 𝑒 |
| 21 | 17 | cv | ⊢ 𝑑 |
| 22 | 21 | cdm | ⊢ dom 𝑑 |
| 23 | 20 22 18 | wf1o | ⊢ 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 |
| 24 | vi | ⊢ 𝑖 | |
| 25 | 24 | cv | ⊢ 𝑖 |
| 26 | 25 18 | cfv | ⊢ ( 𝑗 ‘ 𝑖 ) |
| 27 | 26 21 | cfv | ⊢ ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) |
| 28 | 25 19 | cfv | ⊢ ( 𝑒 ‘ 𝑖 ) |
| 29 | 5 28 | cima | ⊢ ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) |
| 30 | 27 29 | wceq | ⊢ ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) |
| 31 | 30 24 20 | wral | ⊢ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) |
| 32 | 23 31 | wa | ⊢ ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
| 33 | 32 17 16 | wsbc | ⊢ [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
| 34 | 33 15 14 | wsbc | ⊢ [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
| 35 | 34 12 | wex | ⊢ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
| 36 | 11 35 | wa | ⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) |
| 37 | 36 4 | cab | ⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } |
| 38 | 1 3 2 2 37 | cmpo | ⊢ ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |
| 39 | 0 38 | wceq | ⊢ GraphIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |