This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any representation of a graph G (especially as ordered pair G = <. V , E >. ) is convertible in a representation of the graph as extensible structure. (Contributed by AV, 8-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grastruct.h | ⊢ 𝐻 = { 〈 ( Base ‘ ndx ) , ( Vtx ‘ 𝐺 ) 〉 , 〈 ( .ef ‘ ndx ) , ( iEdg ‘ 𝐺 ) 〉 } | |
| Assertion | grastruct | ⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grastruct.h | ⊢ 𝐻 = { 〈 ( Base ‘ ndx ) , ( Vtx ‘ 𝐺 ) 〉 , 〈 ( .ef ‘ ndx ) , ( iEdg ‘ 𝐺 ) 〉 } | |
| 2 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 3 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 4 | 1 | struct2grvtx | ⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) ∈ V ) → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) |
| 5 | 2 3 4 | mp2an | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) |
| 6 | 5 | eqcomi | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) |
| 7 | 1 | struct2griedg | ⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) ∈ V ) → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
| 8 | 2 3 7 | mp2an | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) |
| 9 | 8 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) |
| 10 | 6 9 | pm3.2i | ⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |