This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any representation of a graph G (especially as ordered pair G = <. V , E >. ) is convertible in a representation of the graph as extensible structure. (Contributed by AV, 8-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grastruct.h | |- H = { <. ( Base ` ndx ) , ( Vtx ` G ) >. , <. ( .ef ` ndx ) , ( iEdg ` G ) >. } |
|
| Assertion | grastruct | |- ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grastruct.h | |- H = { <. ( Base ` ndx ) , ( Vtx ` G ) >. , <. ( .ef ` ndx ) , ( iEdg ` G ) >. } |
|
| 2 | fvex | |- ( Vtx ` G ) e. _V |
|
| 3 | fvex | |- ( iEdg ` G ) e. _V |
|
| 4 | 1 | struct2grvtx | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( Vtx ` H ) = ( Vtx ` G ) ) |
| 5 | 2 3 4 | mp2an | |- ( Vtx ` H ) = ( Vtx ` G ) |
| 6 | 5 | eqcomi | |- ( Vtx ` G ) = ( Vtx ` H ) |
| 7 | 1 | struct2griedg | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( iEdg ` H ) = ( iEdg ` G ) ) |
| 8 | 2 3 7 | mp2an | |- ( iEdg ` H ) = ( iEdg ` G ) |
| 9 | 8 | eqcomi | |- ( iEdg ` G ) = ( iEdg ` H ) |
| 10 | 6 9 | pm3.2i | |- ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) |