This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicref | ⊢ ( 𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | 1 | idghm | ⊢ ( 𝑅 ∈ Grp → ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 3 | cnvresid | ⊢ ◡ ( I ↾ ( Base ‘ 𝑅 ) ) = ( I ↾ ( Base ‘ 𝑅 ) ) | |
| 4 | 3 2 | eqeltrid | ⊢ ( 𝑅 ∈ Grp → ◡ ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 5 | isgim2 | ⊢ ( ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpIso 𝑅 ) ↔ ( ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ◡ ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) ) | |
| 6 | 2 4 5 | sylanbrc | ⊢ ( 𝑅 ∈ Grp → ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpIso 𝑅 ) ) |
| 7 | brgici | ⊢ ( ( I ↾ ( Base ‘ 𝑅 ) ) ∈ ( 𝑅 GrpIso 𝑅 ) → 𝑅 ≃𝑔 𝑅 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅 ) |