This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | |- F = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y G z ) } ) |
|
| genp.2 | |- ( ( y e. Q. /\ z e. Q. ) -> ( y G z ) e. Q. ) |
||
| Assertion | genpn0 | |- ( ( A e. P. /\ B e. P. ) -> (/) C. ( A F B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | |- F = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y G z ) } ) |
|
| 2 | genp.2 | |- ( ( y e. Q. /\ z e. Q. ) -> ( y G z ) e. Q. ) |
|
| 3 | prn0 | |- ( A e. P. -> A =/= (/) ) |
|
| 4 | n0 | |- ( A =/= (/) <-> E. f f e. A ) |
|
| 5 | 3 4 | sylib | |- ( A e. P. -> E. f f e. A ) |
| 6 | prn0 | |- ( B e. P. -> B =/= (/) ) |
|
| 7 | n0 | |- ( B =/= (/) <-> E. g g e. B ) |
|
| 8 | 6 7 | sylib | |- ( B e. P. -> E. g g e. B ) |
| 9 | 5 8 | anim12i | |- ( ( A e. P. /\ B e. P. ) -> ( E. f f e. A /\ E. g g e. B ) ) |
| 10 | 1 2 | genpprecl | |- ( ( A e. P. /\ B e. P. ) -> ( ( f e. A /\ g e. B ) -> ( f G g ) e. ( A F B ) ) ) |
| 11 | ne0i | |- ( ( f G g ) e. ( A F B ) -> ( A F B ) =/= (/) ) |
|
| 12 | 0pss | |- ( (/) C. ( A F B ) <-> ( A F B ) =/= (/) ) |
|
| 13 | 11 12 | sylibr | |- ( ( f G g ) e. ( A F B ) -> (/) C. ( A F B ) ) |
| 14 | 10 13 | syl6 | |- ( ( A e. P. /\ B e. P. ) -> ( ( f e. A /\ g e. B ) -> (/) C. ( A F B ) ) ) |
| 15 | 14 | expcomd | |- ( ( A e. P. /\ B e. P. ) -> ( g e. B -> ( f e. A -> (/) C. ( A F B ) ) ) ) |
| 16 | 15 | exlimdv | |- ( ( A e. P. /\ B e. P. ) -> ( E. g g e. B -> ( f e. A -> (/) C. ( A F B ) ) ) ) |
| 17 | 16 | com23 | |- ( ( A e. P. /\ B e. P. ) -> ( f e. A -> ( E. g g e. B -> (/) C. ( A F B ) ) ) ) |
| 18 | 17 | exlimdv | |- ( ( A e. P. /\ B e. P. ) -> ( E. f f e. A -> ( E. g g e. B -> (/) C. ( A F B ) ) ) ) |
| 19 | 18 | impd | |- ( ( A e. P. /\ B e. P. ) -> ( ( E. f f e. A /\ E. g g e. B ) -> (/) C. ( A F B ) ) ) |
| 20 | 9 19 | mpd | |- ( ( A e. P. /\ B e. P. ) -> (/) C. ( A F B ) ) |