This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
The Generalized Continuum Hypothesis
Derivation of the Axiom of Choice
gchacg
Metamath Proof Explorer
Description: A "local" form of gchac . If A and ~P A are GCH-sets, then
~P A is well-orderable. The proof is due to Specker. Theorem 2.1 of
KanamoriPincus p. 419. (Contributed by Mario Carneiro , 15-May-2015)
Ref
Expression
Assertion
gchacg
⊢ ω ≼ A ∧ A ∈ GCH ∧ 𝒫 A ∈ GCH → 𝒫 A ∈ dom ⁡ card
Proof
Step
Hyp
Ref
Expression
1
harcl
⊢ har ⁡ A ∈ On
2
gchhar
⊢ ω ≼ A ∧ A ∈ GCH ∧ 𝒫 A ∈ GCH → har ⁡ A ≈ 𝒫 A
3
isnumi
⊢ har ⁡ A ∈ On ∧ har ⁡ A ≈ 𝒫 A → 𝒫 A ∈ dom ⁡ card
4
1 2 3
sylancr
⊢ ω ≼ A ∧ A ∈ GCH ∧ 𝒫 A ∈ GCH → 𝒫 A ∈ dom ⁡ card