This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ga0 | ⊢ ( 𝐺 ∈ Grp → ∅ ∈ ( 𝐺 GrpAct ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | 1 | jctr | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ Grp ∧ ∅ ∈ V ) ) |
| 3 | f0 | ⊢ ∅ : ∅ ⟶ ∅ | |
| 4 | xp0 | ⊢ ( ( Base ‘ 𝐺 ) × ∅ ) = ∅ | |
| 5 | 4 | feq2i | ⊢ ( ∅ : ( ( Base ‘ 𝐺 ) × ∅ ) ⟶ ∅ ↔ ∅ : ∅ ⟶ ∅ ) |
| 6 | 3 5 | mpbir | ⊢ ∅ : ( ( Base ‘ 𝐺 ) × ∅ ) ⟶ ∅ |
| 7 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( ( ( 0g ‘ 𝐺 ) ∅ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∅ 𝑥 ) = ( 𝑦 ∅ ( 𝑧 ∅ 𝑥 ) ) ) | |
| 8 | 6 7 | pm3.2i | ⊢ ( ∅ : ( ( Base ‘ 𝐺 ) × ∅ ) ⟶ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( ( 0g ‘ 𝐺 ) ∅ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∅ 𝑥 ) = ( 𝑦 ∅ ( 𝑧 ∅ 𝑥 ) ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 12 | 9 10 11 | isga | ⊢ ( ∅ ∈ ( 𝐺 GrpAct ∅ ) ↔ ( ( 𝐺 ∈ Grp ∧ ∅ ∈ V ) ∧ ( ∅ : ( ( Base ‘ 𝐺 ) × ∅ ) ⟶ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( ( 0g ‘ 𝐺 ) ∅ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∅ 𝑥 ) = ( 𝑦 ∅ ( 𝑧 ∅ 𝑥 ) ) ) ) ) ) |
| 13 | 2 8 12 | sylanblrc | ⊢ ( 𝐺 ∈ Grp → ∅ ∈ ( 𝐺 GrpAct ∅ ) ) |