This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ga0 | |- ( G e. Grp -> (/) e. ( G GrpAct (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | 1 | jctr | |- ( G e. Grp -> ( G e. Grp /\ (/) e. _V ) ) |
| 3 | f0 | |- (/) : (/) --> (/) |
|
| 4 | xp0 | |- ( ( Base ` G ) X. (/) ) = (/) |
|
| 5 | 4 | feq2i | |- ( (/) : ( ( Base ` G ) X. (/) ) --> (/) <-> (/) : (/) --> (/) ) |
| 6 | 3 5 | mpbir | |- (/) : ( ( Base ` G ) X. (/) ) --> (/) |
| 7 | ral0 | |- A. x e. (/) ( ( ( 0g ` G ) (/) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) (/) x ) = ( y (/) ( z (/) x ) ) ) |
|
| 8 | 6 7 | pm3.2i | |- ( (/) : ( ( Base ` G ) X. (/) ) --> (/) /\ A. x e. (/) ( ( ( 0g ` G ) (/) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) (/) x ) = ( y (/) ( z (/) x ) ) ) ) |
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | 9 10 11 | isga | |- ( (/) e. ( G GrpAct (/) ) <-> ( ( G e. Grp /\ (/) e. _V ) /\ ( (/) : ( ( Base ` G ) X. (/) ) --> (/) /\ A. x e. (/) ( ( ( 0g ` G ) (/) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) (/) x ) = ( y (/) ( z (/) x ) ) ) ) ) ) |
| 13 | 2 8 12 | sylanblrc | |- ( G e. Grp -> (/) e. ( G GrpAct (/) ) ) |