This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 7-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fztp | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 2 ) ) = { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | fzsuc | ⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) ) |
| 5 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | addass | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) ) | |
| 8 | 6 6 7 | mp3an23 | ⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) ) |
| 10 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 11 | 10 | oveq2i | ⊢ ( 𝑀 + 2 ) = ( 𝑀 + ( 1 + 1 ) ) |
| 12 | 9 11 | eqtr4di | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + 2 ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( ( 𝑀 + 1 ) + 1 ) ) = ( 𝑀 ... ( 𝑀 + 2 ) ) ) |
| 14 | fzpr | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) | |
| 15 | 12 | sneqd | ⊢ ( 𝑀 ∈ ℤ → { ( ( 𝑀 + 1 ) + 1 ) } = { ( 𝑀 + 2 ) } ) |
| 16 | 14 15 | uneq12d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) = ( { 𝑀 , ( 𝑀 + 1 ) } ∪ { ( 𝑀 + 2 ) } ) ) |
| 17 | df-tp | ⊢ { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } = ( { 𝑀 , ( 𝑀 + 1 ) } ∪ { ( 𝑀 + 2 ) } ) | |
| 18 | 16 17 | eqtr4di | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) = { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } ) |
| 19 | 4 13 18 | 3eqtr3d | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 2 ) ) = { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } ) |