This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoun | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ..^ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 3 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 4 | nn0z | ⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℤ ) | |
| 5 | zaddcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 + 𝐶 ) ∈ ℤ ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 + 𝐶 ) ∈ ℤ ) |
| 7 | 3 | adantr | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
| 8 | eluzle | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ≤ 𝐵 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ≤ 𝐵 ) |
| 10 | nn0ge0 | ⊢ ( 𝐶 ∈ ℕ0 → 0 ≤ 𝐶 ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 0 ≤ 𝐶 ) |
| 12 | eluzelre | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 13 | nn0re | ⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℝ ) | |
| 14 | addge01 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐵 + 𝐶 ) ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 0 ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐵 + 𝐶 ) ) ) |
| 16 | 11 15 | mpbid | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ≤ ( 𝐵 + 𝐶 ) ) |
| 17 | 2 6 7 9 16 | elfzd | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 𝐶 ) ) ) |
| 18 | fzosplit | ⊢ ( 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 𝐶 ) ) → ( 𝐴 ..^ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 𝐶 ) ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ..^ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 𝐶 ) ) ) ) |