This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of sequential integers has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 31-Oct-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzopth | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) = ( J ... K ) <-> ( M = J /\ N = K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 2 | 1 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> M e. ( M ... N ) ) |
| 3 | simpr | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( M ... N ) = ( J ... K ) ) |
|
| 4 | 2 3 | eleqtrd | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> M e. ( J ... K ) ) |
| 5 | elfzuz | |- ( M e. ( J ... K ) -> M e. ( ZZ>= ` J ) ) |
|
| 6 | uzss | |- ( M e. ( ZZ>= ` J ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` J ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` J ) ) |
| 8 | elfzuz2 | |- ( M e. ( J ... K ) -> K e. ( ZZ>= ` J ) ) |
|
| 9 | eluzfz1 | |- ( K e. ( ZZ>= ` J ) -> J e. ( J ... K ) ) |
|
| 10 | 4 8 9 | 3syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> J e. ( J ... K ) ) |
| 11 | 10 3 | eleqtrrd | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> J e. ( M ... N ) ) |
| 12 | elfzuz | |- ( J e. ( M ... N ) -> J e. ( ZZ>= ` M ) ) |
|
| 13 | uzss | |- ( J e. ( ZZ>= ` M ) -> ( ZZ>= ` J ) C_ ( ZZ>= ` M ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ZZ>= ` J ) C_ ( ZZ>= ` M ) ) |
| 15 | 7 14 | eqssd | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ZZ>= ` M ) = ( ZZ>= ` J ) ) |
| 16 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 17 | 16 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> M e. ZZ ) |
| 18 | uz11 | |- ( M e. ZZ -> ( ( ZZ>= ` M ) = ( ZZ>= ` J ) <-> M = J ) ) |
|
| 19 | 17 18 | syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ( ZZ>= ` M ) = ( ZZ>= ` J ) <-> M = J ) ) |
| 20 | 15 19 | mpbid | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> M = J ) |
| 21 | eluzfz2 | |- ( K e. ( ZZ>= ` J ) -> K e. ( J ... K ) ) |
|
| 22 | 4 8 21 | 3syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> K e. ( J ... K ) ) |
| 23 | 22 3 | eleqtrrd | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> K e. ( M ... N ) ) |
| 24 | elfzuz3 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 25 | uzss | |- ( N e. ( ZZ>= ` K ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` K ) ) |
|
| 26 | 23 24 25 | 3syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` K ) ) |
| 27 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 28 | 27 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> N e. ( M ... N ) ) |
| 29 | 28 3 | eleqtrd | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> N e. ( J ... K ) ) |
| 30 | elfzuz3 | |- ( N e. ( J ... K ) -> K e. ( ZZ>= ` N ) ) |
|
| 31 | uzss | |- ( K e. ( ZZ>= ` N ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
|
| 32 | 29 30 31 | 3syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
| 33 | 26 32 | eqssd | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ZZ>= ` N ) = ( ZZ>= ` K ) ) |
| 34 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 35 | 34 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> N e. ZZ ) |
| 36 | uz11 | |- ( N e. ZZ -> ( ( ZZ>= ` N ) = ( ZZ>= ` K ) <-> N = K ) ) |
|
| 37 | 35 36 | syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( ( ZZ>= ` N ) = ( ZZ>= ` K ) <-> N = K ) ) |
| 38 | 33 37 | mpbid | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> N = K ) |
| 39 | 20 38 | jca | |- ( ( N e. ( ZZ>= ` M ) /\ ( M ... N ) = ( J ... K ) ) -> ( M = J /\ N = K ) ) |
| 40 | 39 | ex | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) = ( J ... K ) -> ( M = J /\ N = K ) ) ) |
| 41 | oveq12 | |- ( ( M = J /\ N = K ) -> ( M ... N ) = ( J ... K ) ) |
|
| 42 | 40 41 | impbid1 | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) = ( J ... K ) <-> ( M = J /\ N = K ) ) ) |