This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split the last element of a half-open range of sequential integers. (Contributed by Thierry Arnoux, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzodif2 | |- ( N e. ( ZZ>= ` M ) -> ( ( M ..^ ( N + 1 ) ) \ { N } ) = ( M ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplitsn | |- ( N e. ( ZZ>= ` M ) -> ( M ..^ ( N + 1 ) ) = ( ( M ..^ N ) u. { N } ) ) |
|
| 2 | 1 | difeq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( M ..^ ( N + 1 ) ) \ { N } ) = ( ( ( M ..^ N ) u. { N } ) \ { N } ) ) |
| 3 | difun2 | |- ( ( ( M ..^ N ) u. { N } ) \ { N } ) = ( ( M ..^ N ) \ { N } ) |
|
| 4 | 2 3 | eqtrdi | |- ( N e. ( ZZ>= ` M ) -> ( ( M ..^ ( N + 1 ) ) \ { N } ) = ( ( M ..^ N ) \ { N } ) ) |
| 5 | fzonel | |- -. N e. ( M ..^ N ) |
|
| 6 | disjsn | |- ( ( ( M ..^ N ) i^i { N } ) = (/) <-> -. N e. ( M ..^ N ) ) |
|
| 7 | 5 6 | mpbir | |- ( ( M ..^ N ) i^i { N } ) = (/) |
| 8 | disjdif2 | |- ( ( ( M ..^ N ) i^i { N } ) = (/) -> ( ( M ..^ N ) \ { N } ) = ( M ..^ N ) ) |
|
| 9 | 7 8 | mp1i | |- ( N e. ( ZZ>= ` M ) -> ( ( M ..^ N ) \ { N } ) = ( M ..^ N ) ) |
| 10 | 4 9 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( ( M ..^ ( N + 1 ) ) \ { N } ) = ( M ..^ N ) ) |