This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo1to4tp | |- ( 1 ..^ 4 ) = { 1 , 2 , 3 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z | |- 4 e. ZZ |
|
| 2 | fzoval | |- ( 4 e. ZZ -> ( 1 ..^ 4 ) = ( 1 ... ( 4 - 1 ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( 1 ..^ 4 ) = ( 1 ... ( 4 - 1 ) ) |
| 4 | 4m1e3 | |- ( 4 - 1 ) = 3 |
|
| 5 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 6 | 2cn | |- 2 e. CC |
|
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | 6 7 | addcomi | |- ( 2 + 1 ) = ( 1 + 2 ) |
| 9 | 4 5 8 | 3eqtri | |- ( 4 - 1 ) = ( 1 + 2 ) |
| 10 | 9 | oveq2i | |- ( 1 ... ( 4 - 1 ) ) = ( 1 ... ( 1 + 2 ) ) |
| 11 | 1z | |- 1 e. ZZ |
|
| 12 | fztp | |- ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) |
|
| 13 | eqidd | |- ( 1 e. ZZ -> 1 = 1 ) |
|
| 14 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 15 | 14 | a1i | |- ( 1 e. ZZ -> ( 1 + 1 ) = 2 ) |
| 16 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
| 17 | 16 | a1i | |- ( 1 e. ZZ -> ( 1 + 2 ) = 3 ) |
| 18 | 13 15 17 | tpeq123d | |- ( 1 e. ZZ -> { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) |
| 19 | 12 18 | eqtrd | |- ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } ) |
| 20 | 11 19 | ax-mp | |- ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } |
| 21 | 3 10 20 | 3eqtri | |- ( 1 ..^ 4 ) = { 1 , 2 , 3 } |