This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzneuz | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ¬ ( 𝑀 ... 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 2 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) | |
| 3 | ltp1 | ⊢ ( 𝑁 ∈ ℝ → 𝑁 < ( 𝑁 + 1 ) ) | |
| 4 | peano2re | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) | |
| 5 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℝ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 7 | 3 6 | mpbid | ⊢ ( 𝑁 ∈ ℝ → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 8 | 2 7 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 9 | elfzle2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 + 1 ) ≤ 𝑁 ) | |
| 10 | 8 9 | nsyl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 12 | nelneq2 | ⊢ ( ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ¬ ( ℤ≥ ‘ 𝐾 ) = ( 𝑀 ... 𝑁 ) ) | |
| 13 | 1 11 12 | syl2an2 | ⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ ( ℤ≥ ‘ 𝐾 ) = ( 𝑀 ... 𝑁 ) ) |
| 14 | eqcom | ⊢ ( ( ℤ≥ ‘ 𝐾 ) = ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ... 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) | |
| 15 | 13 14 | sylnib | ⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ ( 𝑀 ... 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 16 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 18 | nelneq2 | ⊢ ( ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ ( 𝑀 ... 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) | |
| 19 | 17 18 | sylancom | ⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ ( 𝑀 ... 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 20 | 15 19 | pm2.61dan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ¬ ( 𝑀 ... 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) |