This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | p1le | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lep1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( 𝐴 + 1 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ ( 𝐴 + 1 ) ) |
| 3 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 4 | 3 | ancli | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ) |
| 5 | letr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) | |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
| 7 | 4 6 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
| 8 | 2 7 | mpand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) ≤ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 9 | 8 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |