This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz1sbc | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ↔ [ 𝑁 / 𝑘 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc6g | ⊢ ( 𝑁 ∈ ℤ → ( [ 𝑁 / 𝑘 ] 𝜑 ↔ ∀ 𝑘 ( 𝑘 = 𝑁 → 𝜑 ) ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ↔ ∀ 𝑘 ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝜑 ) ) | |
| 3 | elfz1eq | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝑘 = 𝑁 ) | |
| 4 | elfz3 | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( 𝑁 ... 𝑁 ) ) | |
| 5 | eleq1 | ⊢ ( 𝑘 = 𝑁 → ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑁 ... 𝑁 ) ) ) | |
| 6 | 4 5 | syl5ibrcom | ⊢ ( 𝑁 ∈ ℤ → ( 𝑘 = 𝑁 → 𝑘 ∈ ( 𝑁 ... 𝑁 ) ) ) |
| 7 | 3 6 | impbid2 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) ↔ 𝑘 = 𝑁 ) ) |
| 8 | 7 | imbi1d | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝜑 ) ↔ ( 𝑘 = 𝑁 → 𝜑 ) ) ) |
| 9 | 8 | albidv | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝜑 ) ↔ ∀ 𝑘 ( 𝑘 = 𝑁 → 𝜑 ) ) ) |
| 10 | 2 9 | bitr2id | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ( 𝑘 = 𝑁 → 𝜑 ) ↔ ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ) ) |
| 11 | 1 10 | bitr2d | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ↔ [ 𝑁 / 𝑘 ] 𝜑 ) ) |