This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Proof shortened by SN, 5-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbc6g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 2 | elab6g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 3 | 1 2 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |