This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz1sbc | |- ( N e. ZZ -> ( A. k e. ( N ... N ) ph <-> [. N / k ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc6g | |- ( N e. ZZ -> ( [. N / k ]. ph <-> A. k ( k = N -> ph ) ) ) |
|
| 2 | df-ral | |- ( A. k e. ( N ... N ) ph <-> A. k ( k e. ( N ... N ) -> ph ) ) |
|
| 3 | elfz1eq | |- ( k e. ( N ... N ) -> k = N ) |
|
| 4 | elfz3 | |- ( N e. ZZ -> N e. ( N ... N ) ) |
|
| 5 | eleq1 | |- ( k = N -> ( k e. ( N ... N ) <-> N e. ( N ... N ) ) ) |
|
| 6 | 4 5 | syl5ibrcom | |- ( N e. ZZ -> ( k = N -> k e. ( N ... N ) ) ) |
| 7 | 3 6 | impbid2 | |- ( N e. ZZ -> ( k e. ( N ... N ) <-> k = N ) ) |
| 8 | 7 | imbi1d | |- ( N e. ZZ -> ( ( k e. ( N ... N ) -> ph ) <-> ( k = N -> ph ) ) ) |
| 9 | 8 | albidv | |- ( N e. ZZ -> ( A. k ( k e. ( N ... N ) -> ph ) <-> A. k ( k = N -> ph ) ) ) |
| 10 | 2 9 | bitr2id | |- ( N e. ZZ -> ( A. k ( k = N -> ph ) <-> A. k e. ( N ... N ) ph ) ) |
| 11 | 1 10 | bitr2d | |- ( N e. ZZ -> ( A. k e. ( N ... N ) ph <-> [. N / k ]. ph ) ) |