This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvprmselelfz.f | |- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
|
| Assertion | fvprmselelfz | |- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> ( F ` X ) e. ( 1 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | |- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
|
| 2 | eleq1 | |- ( m = X -> ( m e. Prime <-> X e. Prime ) ) |
|
| 3 | id | |- ( m = X -> m = X ) |
|
| 4 | 2 3 | ifbieq1d | |- ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) |
| 5 | iftrue | |- ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) |
|
| 6 | 5 | adantr | |- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> if ( X e. Prime , X , 1 ) = X ) |
| 7 | 4 6 | sylan9eqr | |- ( ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
| 8 | elfznn | |- ( X e. ( 1 ... N ) -> X e. NN ) |
|
| 9 | 8 | adantl | |- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> X e. NN ) |
| 10 | 9 | adantl | |- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. NN ) |
| 11 | 1 7 10 10 | fvmptd2 | |- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) = X ) |
| 12 | simprr | |- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. ( 1 ... N ) ) |
|
| 13 | 11 12 | eqeltrd | |- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) e. ( 1 ... N ) ) |
| 14 | iffalse | |- ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) |
|
| 15 | 14 | adantr | |- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
| 16 | 4 15 | sylan9eqr | |- ( ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 17 | 9 | adantl | |- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. NN ) |
| 18 | 1nn | |- 1 e. NN |
|
| 19 | 18 | a1i | |- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> 1 e. NN ) |
| 20 | 1 16 17 19 | fvmptd2 | |- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) = 1 ) |
| 21 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 22 | eluzfz1 | |- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
|
| 23 | 21 22 | sylbi | |- ( N e. NN -> 1 e. ( 1 ... N ) ) |
| 24 | 23 | adantr | |- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) |
| 25 | 24 | adantl | |- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> 1 e. ( 1 ... N ) ) |
| 26 | 20 25 | eqeltrd | |- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) e. ( 1 ... N ) ) |
| 27 | 13 26 | pm2.61ian | |- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> ( F ` X ) e. ( 1 ... N ) ) |