This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab3g.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| fvopab3g.3 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| fvopab3g.4 | ⊢ ( 𝑥 ∈ 𝐶 → ∃! 𝑦 𝜑 ) | ||
| fvopab3g.5 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } | ||
| Assertion | fvopab3g | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab3g.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | fvopab3g.3 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | fvopab3g.4 | ⊢ ( 𝑥 ∈ 𝐶 → ∃! 𝑦 𝜑 ) | |
| 4 | fvopab3g.5 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 6 | 5 1 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 7 | 2 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
| 8 | 6 7 | opelopabg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
| 9 | 3 4 | fnopab | ⊢ 𝐹 Fn 𝐶 |
| 10 | fnopfvb | ⊢ ( ( 𝐹 Fn 𝐶 ∧ 𝐴 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) | |
| 11 | 9 10 | mpan | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |
| 12 | 4 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) |
| 13 | 11 12 | bitrdi | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) |
| 15 | ibar | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝜒 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝜒 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
| 17 | 8 14 16 | 3bitr4d | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 𝜒 ) ) |