This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab3ig.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| fvopab3ig.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| fvopab3ig.3 | ⊢ ( 𝑥 ∈ 𝐶 → ∃* 𝑦 𝜑 ) | ||
| fvopab3ig.4 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } | ||
| Assertion | fvopab3ig | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝜒 → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab3ig.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | fvopab3ig.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | fvopab3ig.3 | ⊢ ( 𝑥 ∈ 𝐶 → ∃* 𝑦 𝜑 ) | |
| 4 | fvopab3ig.4 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 6 | 5 1 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 7 | 2 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
| 8 | 6 7 | opelopabg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
| 9 | 8 | biimpar | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) → 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) |
| 10 | 9 | exp43 | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐵 ∈ 𝐷 → ( 𝐴 ∈ 𝐶 → ( 𝜒 → 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) ) ) |
| 11 | 10 | pm2.43a | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐵 ∈ 𝐷 → ( 𝜒 → 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝜒 → 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) |
| 13 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐴 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ‘ 𝐴 ) |
| 14 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) ) | |
| 15 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐶 → ∃* 𝑦 𝜑 ) ) | |
| 16 | 3 15 | mpbir | ⊢ ∃* 𝑦 ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) |
| 17 | 14 16 | mpgbir | ⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } |
| 18 | funopfv | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } → ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ‘ 𝐴 ) = 𝐵 ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } → ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ‘ 𝐴 ) = 𝐵 ) |
| 20 | 13 19 | eqtrid | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
| 21 | 12 20 | syl6 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝜒 → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) |