This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvn0elsuppb | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvn0elsupp | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → 𝑋 ∈ ( 𝐺 supp ∅ ) ) | |
| 2 | 1 | exp43 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑋 ∈ 𝐵 → ( 𝐺 Fn 𝐵 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) ) ) |
| 3 | 2 | 3imp | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) |
| 4 | simp3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → 𝐺 Fn 𝐵 ) | |
| 5 | simp1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → 𝐵 ∈ 𝑉 ) | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | a1i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ∅ ∈ V ) |
| 8 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) | |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 10 | simpr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) → ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) | |
| 11 | 9 10 | biimtrdi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
| 12 | 3 11 | impbid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) |